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ABSTRACT

Consider the abstract differential equation

(1) u”(t) + 2Bu’(t) = Au(t) + Fu(t)), t ¢ R, u(n) = x,

ur(0) =y

where A and B are densely defined linear operators and F is

possibly nonlinear and unbounded. Assuming that A + B2 generates a

cosine family C{(t) and -B generates a group T(t), there is a

variation of constants formula for (1); namely

(2) u(t) = T()[C(t)x + S(L)(Bx + y)

. Jt T(t - s)S(t - s)F(u(s)) ds,
0

where S(t) 1is the sine family associated with C(t). The motivating

examples include w__ + 2b(x)wt =W+ f(w,wx,wt) and w,__ + 2w __ =

tt XX tt tXx

Wt f(w,wx,wt), for 0<x<mwm, te R, wx,0) = h(x), wt(x’o) = g(x),

and various boundary conditions. We examine the existence of mild solu-
tions and the asymptotic behavior when there is a damping effect intro-
duced by the 2Bu'(t) term.

AMS(MOS) Subject Classification: 34620, 35L15

Key Words: abstract differential equations, strongly continuous

cosine family, strongly continuous group
Work Unit No. 1 - Applied Analysis

Sponsored by the United States Army under Contract No. DAAGZ29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. ISP-8011453-15.




, - e F T T R N S . i
' .
.

> SIGNIFICANCE AND EXPLANATION

' : A variation of constants formula is given for certain second
order differential equations in a Banach space. The abstract

results obtained can be applied to a class of damped semilinear

hyperbolic partial differential equations; in particular, the

existence and asymptotic behavior of solutions of such equations
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summary lies with MRC, and not with the authors of this report.




=

)

) e
E T Lk oy s e, ey

COSINE FAMILIES AND DAMPED SECOND ORDER
DIFFERENTIAL EQUATIONS

James H. Lightbourne, III
Samuel M. Rankin, III

1. INTRODUCTION. Let X be a Banach space and A and B be linear
operators on X with domains D(A) and D(B) respectively. F will de-
note a nonlinear, possibly unbounded map on X. We consider the abstract

differential equation:
1.1 u”(t) + 2Bu’(t) = Au(t) + F(u(t)), t e R
u(0) = x, u’(0) =y

Essentially under the assumption that A + B2 generates a cosine family
C(t), t e R, of linear operators on X and that -B generates a group
T(t), we will establish existence for (1.1) and examine the asymptotic
behavior of (1.1) when there is a damping effect introduced by the term ﬂ
2Bu’(t). We will actually consider 'mild" solutions of (1.1); i.e., solu-
tions of the variation of constants equation:

t
(1.2} u(t) = T()[C(t)x + S(t)(Bx + y)] + IO T(t - s)S(t - s)F(u(s))ds,
where S(t) 1is the sine family associated with C(t).

Two situations to which the abstract theory applies are indicated by

the following examples.

(1.3) Wee (X,t) + 2b(xJw (x,t) = w  (x,t) + fw(x,t), w (x,t)),
te R, 0<x<m
w(x,0) = h(x), wt(x,ﬂ) = g(x), 0<sx<smw
w(0,t) = w(m,t) = 0, t e R

where b: |0,7} » R is continuous. Asymptotic behavior for (1.3)

Sponsored by the United States Armmy under Contract llo. DAAGZ9-80-C-0041. 1his
material is based upon work supported by the National Science Foundation under
Grant No. ISP-8011453-15.




and f = 0 has been considered by Rauch [3]. The second illustrative

example is

(1.4) W (K1) + 20 (,8) = W (x,8) + £QH(x,), W (x,1)),

te R, 0«<x«nm

w(x,0)

h(x}, wt(x,O) = g(x), 0 <x <7

w(0,t)

w(m,t), wx(o,t) = wx(w,t), te R

The preliminaries in section 2 include the known properties of cosine
families that we will use and the assumptions on A and B which will be
made throughout the paper. Also, in section 2 we establish the relation-
ship between equations (1.1) and (1.2). In section 3 we give existence
criteria for equation (1.2) and some global properties of solutions are

given in section 4. The examples are discussed in sectinn 5.

2. PRELIMINARIES. Let X be a Banach space with norm |-].

DEFINITION. A one-parameter family {C(t): t € R} of bounded linear

operators on X 1is called a strongly continuous cosine family provided

(i) C(0) = 1, the identity on X;
(ii) C(s + t) + C(s - t) = 2C(s)C(t), for all s,t ¢ R; and

(iii) for each x ¢ X, C(*)x: R » X 1is continuous.

Associated with C(t) is the sine family {S(t): t ¢ R} defined by

S(t)x = IS C(s)x ds for x ¢ X. the infinitesimal generator of C(t) is

the linear operator G: D(G) » X defined by Gx = C"(0)x where
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D(G) = {x e X: C(*)x: R+ X is twice continuously
differentiablel.

We also refer to the set E defined by

E={x e X: C(*)x: R+ X is continuously differentiable}.
The proof of the following proposition as well as a more complete

discussion of cosine families may be found in Travis and Webb {4].

PROPOSITION 2.1. Zet {C(t): t ¢ R} be a strongly continuous cosine u

family of bounded linear operators on X with gemerator G. The following
properties hold:
(7) G 1is a closed operator on X with domain D(G)
dense in X;
{(i1) ©f x e X, then S(t)x ¢ E and S'(t)x = C(t)x;
(iii) 1f x € B, then S(t)x ¢ D(G) and S"(t)x = GS(t)x;

(i7v) 2f x ¢ E, then C'(t)x = GS(t)x;

(v) 1f x e D{(G), then S(t)x € D(G) and GS(t)x = S{t)Gx;

(vi) i1f x e D(G), then C(t)x € D(G) and C"(t)x = GC(t)x = C(t)Gx;
(vii) C(t + s) - C(t - s) = 2GS(t)S(s), for all s,t € R;
(viii}) S(s + t) = S(s)C(t) + S(t)C(s), for all s,t € R;

(ix) C(t), S(s), C(s8), S(t) commte for s,t e R;

(x) there exist constants K 2 1 and w 2 0 such that

lc)] s ket and |s(t) - D)) s kIsE 1% ds) por

all t,g € R.

Throughout this paper we will make the following suppositions on A

and B. Recall that {T(t): t ¢ R} 1is said to be a strongly continuous




-{ group of linear operators on X provided T(0) = I, T(t + s) = T(t)T(s)

.‘ for all t,s ¢ R, and for each x ¢ X, T(*)x: R~+ X 1is continuous.

(2.1) A and B are densely defined linear operators
on X with domains D(A) < D(B).

(2.2) G =A+ B2 generates a strongly continuous cosine

\ family {C(t): t ¢ R}.

(2.3) -B generates a strongly continuous group {T(t): t ¢ R}

of linear operators on X.

We will also refer to the regularity conditions:

| (2.4) D(G) = D(A + B%) < D(A).

(2.5) T(t): D(A) -~ D(A).
(2.6) E < D(B) and if {S(t): t € R} 1is the sine family

associated with C(t), then t + BS(t)x 1is continuous

N for each x ¢ X and if x ¢ D(B) then S(t)Bx = BS(t)x.

» (2.7 If x e D(B), then C(t)x ¢ D(B) and C(t)Bx = BC(t)x.

(2.8) For x € X, f: T(u)S(u)x du € D(A) and

S
AJ T(u)S(u)x du = T(s)C(s)x - T(r)C(r)x
T

+ BT(s)S(s)x - BT(r)S(r)x.

The authors do not know if (2.8) is a consequence of (2.1) - {2.7); how-

ever, it is observed in section 5 that the examples satisfy (2.1} - (2.8).

PROPOSITION 2.2 (Travis and Webb [S]). Suppose P is a elosed

linear operator on X such that

(1) S(t) e D(P) forall te R and x ¢ X; and

(i1) for each x € X, the map t » PS(t)x <& continuous.
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Then there exists M 21 and w* 2 w such that |PS(t)] < Me” el for

all t e R, where w <s given in Proposition 2.1(X).

REMARK. Assuming condition (2.6), there exists M 21 and w* 2w

%*
such that |BS(t)| < Me® ‘tl.

The following proposition justifies referring to a solution of equation

(1.2) as a mild solution of (1.1).

PROPOSITION 2.3. Suppose (2.1) - (2.8) hold and g: R » X s con-

tinuous. If g: R + X 1is continuously differentiable, x ¢ D(G) with

Bx e E, ye E, and u satisfies

t
(2.9) u(t) = T(t)[C(t)x + S(t)(Bx + y)] + f T(t - s)S(t -s)g(s) ds,
0
then u(t) e D(A), u'(t) e D(B) forall te R, u is twice continuously

differentiable, and u satisfies

(2.10) u”(t) + 2Bu'(t) = Au(t) + g(t)

u(0) = x, u’(0) = y.

Conversely, 1f u <6 twice continuously differentiable, u(t) e D(A) and

u’(t) e D(B) for t e R, and u satisfies (2.10), then u satisfies

(2.9).

Proof. To show that a solution of equation (2.9) satisfies (2.10),

we first define
t

v(t) = [ T(t - s)S(t - s)g(s) ds.
0

Then
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t t (t
v(t) = I T(t -s)S(t-s)g(0) ds + I f T(t-s)S(t-s)g'(u) ds du
u

0 0

t t (t-u |
= f T(t-s)S(t-s)g(0) ds + I I T(s)S(s)g’(u) ds du N

0 0°‘0 3

Using condition (2.8), we have v(t) € D(A) and

Av(t) = T(t)C(t)g(0) - g(0) + BT(t)S(t)g(0)

t
+ f [T(t-u)C(t-u)g’(u) - g’'(u) + BT(t-u)S(t-u)g'(u)] du
0

= T(t)C(t)g(0) - g(0) + BT(t)S(t)g(0)

t
+ f [T(t-u)C(t-u)g’(u) + BT(t-u)S(t-u)g'(u)] du - g(t).

0
Also,
t
v'(t) = T(t)S(t)g(0) + I T(s)S(s)g'(t-s) ds
0
t
= T(t)S(t)g(0) + f T(t-s)S(t-s)g’(s) ds
0
and

v(t) = T(t)C(t)g(0) - BT(t)S(t)g(0)

t
+ J [BT(t -s)S(t-s)g'(s) + T(t-s)C(t-s)g'(s)] ds
0
= Av(t) + g(t)

Defining VH(t) = T(t)[C(t)x + S(t)(Bx + y)] and using a straightforward

computation, one can establish that

vg(t) + ZBvé(t) = AvH(t).
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Noting that wu(t) = vH(t) + v(t), it follcws that u satisfies (2.10).

To establish the converse statement, observe that

dd—sT(t - $)S(t - s)u’(s)

T(t - s)[-C(t - s)u (s) + S(t - s)u’(s)]
+ BT(t ~ s)S(t - s)u’(s)

-T(t - s)C(t ~ s)u'(s)

+ T(t - s)S(t - s)[Au(s) - 2Bu’(s) + g(s)]
+ BT(t - s)S(t - s)u’(s)

and

L T(t-s)C(t-s)u(s) = T(t-s)[-(A+ B23S(t - s)u(s) + C(t - s)u'(s)]

+ BT(t - s)C(t - s)u(s)

Integrating we obtain

t
-T{t)S(t)u (0) = [ [-T(t - s)C(t -s)u’(s) + T(t - s)S(t - s)Au(s)
0

- T(t-s)S(t-s)Bu’(s) + T(t-s)S(t-s)g(s)] ds

and

t
u(t) - T(YC(Hu(n) = f [-T(t - s)AS(t - s)u(s) - T(t-s)BZS(t-s)u(s)
0

+ T(t -s)C(t-s)u’(s) + BT(t-s)C(t-s)u(s)] ds

Addition of the two formulas yields




u(t) - T(t)S(t)u’(0) - T(t)C(t)u(0)

t
= f T(t - s)S(t -s)g(s) ds
0
<, .
+[ [BT(t - s)C(t - s)u(s) - T(t - s)S(t - s)Bu’(s)
0
- T(t - s)B%S(t - s)u(s)] ds
i
. t t d
; = I T(t-s)S(t-s)g(s) ds - J s [T(t - s)S(t - s)Bu(s)] ds
1 0 0
. N
: = f T(t-s)S(rt-s)g(s) ds + T(t)S(t)Bu(0)
: 0
~
and it is seen that u satisfies (2.9).
y -, . 3. EXISTENCE. 1In this section we establish the existence of solutions
; to equation (1.2) under various assumptions on the cosine family C(t)
. generated by G = A + 82 and the nonlinear function F.
: PROPOSITION 3.1 (Fattorini [1]). If G <is the generator of a strongly
)
. continuous cogine family then there exists a translation G, =G - 1 of
..‘
_ X G such that

(1) G;l exists as a bounded operator on X and

(i1) for 0 < a s 1 the fractional powers (-Gc)u exigt as

closed, densely defined operators with

| %
D(G) < D((-G.) ) € D((-G)) ©) for 0<a < 1.

2 %
The existence of (-Gc)-1 implies that (-GC)'Ol exists as a bounded

linear operator on X and consequently D((-Gc)u) becomes a Banach space

X, with norm |x]Ol = l(-Gc)axl. Also in [1], it was shown that if X = ZLP,
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l <p <o then E ¢ D((-Gc)l/z) and for each x ¢ X, (-GC)I/ZS(-)X:ZR - X

is continuous. For general Banach space X, Rankin [2] showed that

! Ec D((-Gc)a) for all 0 < a < 1/2. We shall make the following assumptions:
;:
- (3.1) There exists 0 < A < 1 such that E c D((-Gc))‘) and
_; (-GC)AS(-)X:'R + X 1is continuous for x e X.
{ (3.2) If 0<a<1 and x ¢ n((-cc)“), then T(t)x € D((-Gc)a) ;

¥ with (-G )*T(t)x =T(t)(-G)%x for all t e R.

REMARK. If condition (3.1) holds, then by Proposition 2.2 there exists
it]

b M, 21 and ©, 2w such that |(*GC)>‘S(t)| < M)‘ewX for all t ¢ R.
4

g e THEOREM 3.1. In addition to (2.1) - (2.3), (3.1), and (3.2), suppose
; D < X, is open. If F:D + X satisfies IF(xl) - F(xz)l < le1 - XZIA for
ﬁ some L >0 and all X 5%, € D, then for each x ¢ D n D(B) and y e X

* there exists a > 0 and a unique continuous function u: [-a,a] -+ XA such '
tE that u satisfies (1.2). é

Proof. The proof employs the contraction mapping principle. Choose -

; §>0 and N > 0 such that if

; W(x,8) = {z e X: |z - XIA < 8}

”

fj then W(x,8) < D and [F(z)] < N for z e W(x,8). Choose a > 0 such

that for t ¢ [-a,a]

ITRC(x - x|, + [TOISE)Bx + V)|, <5,

N T(s G S S)I ds < —2 s and
-a

a A
LJ lT(s)(-GC) S(s)| ds < 1.
-a

.
N I T T et




. Define
X

- K= {ve {U-aal; X): sup |v(t) - x|, < 6)

. -ast<a

t and the map H: K » ;:([—a,a]; XA) by
t

[Hv](t) = T(t)[C(t)x + S(t)(Bx + y)] + I T(t-s)S(t - s)F(v(s)) ds

0

{ The choice of 8 and a implies that H: K + K. Furthermore, for
i VsV, € K

t
[Hv, (2) - Hv, (D) ] < [O IT(t - ) (-G st - $)[F(v, () - F(v,(s))]| ds

t
< Lf [T(t - s)(-G ))‘S(t-s)l [v.(s) - v,(s)], ds
0 c 1 2 A
and by the choice of a we have that H satisfies the hypothesis of the

contraction mapping principle. The assertions follow.

”'f THEGRLY 3.2. In addition to assumptions (2.1) - (2.5), (3.1), and
(3.2), suppose (—Gc)_l t8 compact. Let D c Xy be open and 0 < B.

If F:D -+ X, <8 continuous, then for each x ¢ D n D(B) and y ¢ X

B

there exist a > 0 and a continuous function u: [-a,a] =+ XA satisfying
(1.2).

Proof. Let 8§ >0 and N > 0 be such that if
W(x,8) = {z € X : |z—x|)\<6}
then W(x,8) < D and |F(z)|B < N for z e w(x,8). Choose a > 0 such that

IT()C®)x - x|, + [TOSE)Bx + V)|, < 3

and

a A 5
N [T(s)(-6)78(s)| ds < 5 .
-a
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Define the set K and map H as in the proof of Theorem 3.1. As in Theorem

3.1, the choice of & and a implies that H: K > K. For ViV, € K,
¢ A
|Hv, (t) - Hv,(t)]|, < | [T(t-3s)(-G.)"'S(t-s)| |F(v,(s)) - F(v,(s))] ds
1 2T, c 1 2

and the continuity of H follows from the continuity of F: D -+ XB' To show
that {Hv: v ¢ K} is an equicontinuous family in 4;2[-a,a]; ¥ ), we ob-
serve that if (Gc)'1 is compact then (-Gc)'a is compact for 0 < a <1

(see Travis and Webb {6]). For -a < ty<t,sa and v e X
[Hv(t)) - Hvit,) Iy

< 'T(tz)c(tz)x - T(tl)c(tl)xb\ + IT(tz)s(tz) (Bx+y) - T(tl)S(tl)(Bx#-)’)l}\
%
+ ft IT(t, - s)S(t, - SIF(v(s))], ds
1

t
2
+ [0 |[T(t2 - s)S(t2 -s) - T(t1 - s)S(t1 - s)]F(v(s))lA ds.

Now write

t
1
Jo l[T(t2 - s)S(t2 - s8) - T(tl - s)S(tl - s)]F(v(s))|A ds

< E T(t, - $)[(-G ) S(t, - 8) - (-6 )*s(t, - )1(-6 Y &-6 )Pr(v(s))|a
0 T(t, - $)[(-6, 278 ¢ 1 c c s

t
1
. f |T(t,-) [T(t,-t)) -I](-Gc)'B(GC)AS(t1~s)(-GC)BF(V(S)][ ds .
0

The equicontinuity of the family {Hv: v ¢ K} follows since

(6B 0PF): y € W(x,8))




(-6 7P ) s (e, - $1(-60BF(y) iy € W(x,8), 055 s 1) < a)

are precompact sets in X and the maps t » (-GC)AS(t) and t -+ T(t) are
continuous uniformly on compact sets of X. Also, for each v ¢ K and

t e [-a,a]

(-6, (8) = T(ICM) (6.0 x + T(1) (-6 ) s (6 (Bx + y)

t B, o \A 8
+ f T(t-s)(-G.) "(-G.)"S(t-s)(-G ) F(v(s)) ds
0 c c c
and consequently, {Hv(t): ve K and t e [-a,a]} is precompact in XA'
Thus by the Ascoli-Arzela Theorem {Hv: v ¢ K} is precompact in XA and

the assertions of the theorem follow from the Schauder Fixed Point Theorem.

THEOREM 3.3. In addition to assumptions (2.1) - (2.5), (3.1), and
(3.2), suppose (-Gc)-1 i8 compact and 0 s B < A. If D «c XB is open
and F:D + X is continuous, then for each x ¢ D n D(B) and y € X there

extst a > 0 and a continuous function u: [-a,a] + XB satisfying (1.2).

Proof. The proof is similar to that of the previous theorem. Let

>0 and N > 0 be such that if

W(x,8) = {z e X: |2 - x|B < 6}

then W(x,8) <« D and [F(z)] SN for z ¢ W(x,8). Define K and H as

before. One shows H: K+ K and is continuous. Writing

(-6 (e) = TO)C®) (6% + T0) (65 (1) (Bx + y)

t
+ [ T(t - s)(~Gc)B-A(-Gc)AS(t— s)F(v(s)) ds
0
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one observes that { Hv(t): v e K and t ¢ [-a,a]} is precompact in XB

and writing
Ihv(ty) - Hv(e))]g

SITuﬂCaﬂx-Tﬁfm&ﬂx% +(Taﬂsaﬂ(h+y)-T&ﬂs&ﬂ(h+yﬂs

t
2
+ Jt IT(t2 - 8)S(t, - s)F(v(s))lB ds
1
. t
? T Ime, - teelste, - 9 - 678ty - 9166 P RN o
' 0
K t .
! B-A g \A
+ J IT(t, - s)T(t, - t)) - IJ(-G)""(G)'S(t; - s)F(v(s))] ds
0

one observes that the family {Hv: v ¢ K} is equicontinuous. Consequently,

i H(K) ¢ X is precompact the the assertions follow.

. REMARK. 1In addition to the hypothesis of Theorem 3.1, 3.2, or 3.3,
suppose the regularity conditions (2.6) and (2.7) hold. Then if x ¢ E

s.g and y € X, we have that u’ exists and u': [-a,a] = X is continuous.

If the regularity conditions (2.4) - (2.8) hold, F is continuously Frechet

differentiable, x ¢ D(G) with Bx ¢ E, and y ¢ E, then u satisfies (1.1).

w The final theorem of this section gives sufficient criteria for global

existence.

-
-~

THEOREM 3.4. Assume that either

(Z) the suppositions of Theorem 3.1 hold, or
(i1) the suppositions of Theorem 3.2 (3.3) hold and F mapse

bounded sets of D 1into bounded sets of Xg X).

0
*
e
b
A35
%:
-
]
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and the regularity conditions (2.6) - (2.7) hold. If x e E and y € X

K
N and u 1is a solution of equation (1.2) noncontinuable to the right on
z [0,d], then either d = +o or, given any closed bounded set V c D, there
‘ exists a sequence t > d~  such that u(tk) ¢ V. An analogous result holds
for noncontinuability to the left.
; Proof. The proofs under assumptions (i) and (ii) are similar; only
! assumption (ii) with Theorem 3.2 is considered. For contradiction, sup-
; pose d < » and there exists a bounded closed set V < D such that
',} u(t) e V for all t ¢ [0,d). For O < t) < tz <d and u satisfying
-f equation (1.2), we have
!
T lu(t,) - ut) ]y € |[TCE,)C(,) (<63 % - T(t,)C(t,) (-6.) x|
4 2 171 2 2 c 1 1 c
o
. A P\
+ T (-6)78(ty) - T(t))(-6.)78(t )] (Bx + y)|
(% '_‘ t
) 2 A
3 + J IT(t, - s)(-G)"S(t, - s)F(u(s))| ds
... tl
- Y A
.’: + f |[T(t2- s)(-Gc) S(tz- s)
i3 0
=
B A
- - T(t; - s)(-G)"S(t, - s)]F(u(s))| ds.
g Noting that {F(u(s)): 0 < s < d} ¢ F(V) is bounded in XB and thus pre-
é compact in X and that t -+ T(t)(-Gc)AS(t) is uniformly continuous on
:‘ compact sets in X we see that 1lim_u(t) exists with 1lim_u(t) =pe VcD.
k t>d t+d '

Also,

“

B
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lu'(tz) - U'(t1)|

< |T(t2)GS(t2)x - T(tl)GS(tl)xl + IT(tZ)BC(tz)x-T(tl)BC(tl)xl

+ |T(t2)C(t2)(Bx +y) - T(tl)C(tl)(Bx + )|

+ |T(t)BS(t,) (Bx + y) - T(t;)BS(t;)(Bx + y)|

t

2
+ f: |T(t2 -s)C(tz- s)F(u(s)) - T(t2~ s)BS(tz— s)F(u(s))I ds
1

t
. I 1 I[T(t2 - s)C(t2 - 8) - T(t1 - s)C(t1 - s)]F(u(s))l ds
0

t
1

+ f I[T(tz - s)BS(t, - s) - T(t; - s)BS(t; - s)IF(u(s))| ds.
0

Again, using the fact that {F(u(s)): 0 < s < d} is precompact in X and
that t + T(t)C(t) and t + T(t)BS(t) are continuous uniformly on compact

sets of X, it follows that 1lim_u’(t) = q € X exists. Noting that

t+d
d
p = T(d)[C(d)x + S(d)(Bx + y)] + J T(d - s)S(d - s)F(u(s)) ds
0
and
q = T(d)[GS(d)x + C(d)(Bx + y)] - BT(d)[C(d)x + S(d)(Bx + y)]
d d
- I BT(d - s)S(d - s)F(u(s)) ds + J T(d - s)C(d - s)F(u(s)) ds,
0 0

we see that p e D n D(B) and q e X. Thus one can obtain a solution of

the equation

t
v(t) = T(t-d)[C(t-d)p+S(t-d)(Bp+q) + I T(t - s)S(t - s)F(v(s)) ds
d

s S o o s
R SRR R et 2,




for d < t < d*. One then extends u to [0,d*) by defining u(t) = v(t)
on ({d,d*). Using the properties found in Proposition 2.1 (in particular,
identities (vii) and (viii}), one can show for t ¢ [d,d*) that

t

u(t) = v(t) = T(t)[C(t)x + S(t)(Bx + y)] + f T(t-s) S(t - s)F(u(s)) ds,
]

contradicting the noncontinuability of u.

4, ASYMPTOTIC BEHAVIOR. In this section we will assume T(t) decays
exponentially as t + ®; i.e., there exists b > 0 such that |T(t)| < me Pt

for all t ¢ [0,2). For convenience, we assume M = 1.

THEOREM 4.1. In addition to the suppositions of Theorem 3.2, suppose ,
F mape bounded sets of Xy into bounded sets of XB. Also, suppose
b < Wy, X € XY for some X <y <1 with Bx e XB s Y€ XB and u ig a ‘i
golution of (1.2) defined and bounded on [0,®). Then {u(t): t 2 0} <s
precompact in X,. A similar assertion holds under the hypotheses of
Theorem 3.3.

Proof. Choose 1 >y >0 such that XA <y < X + B. Then

(-6.)Tu(t) = (-6 )YT()[C(t)x + S(t) (Bx + y)]

t
. (-GC)YI T(t - s)S(t - s)F(u(s)) ds }
0

T(£)C(e) (-6)Tx + T(0) (-6’ () [(-6)Y "  (Bx + y)] ﬁ

t
. Io T(t - 8) (-cc)"sct - s) (-GC)Y')‘F(u(s)) ds

and thus
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{(-b+w,)t
Y (-b+w)t A
(-6 Yut)| < ke x|, + Mye IBx + vl _,
t (-b+wx)(t-s)
+ M {0 e IF(u(s))IY_A ds.

Consequently, {(-GC)Yu(t)| is bounded and {(-Gc)xu(t): t 20} =

{(-GC)AJY(-GC)Yu(t): t 2 0} is precompact in X.

THEOREM 4.2. In addition to the hypotheses of Theorem 3.4 with D = X ,
suppose there exists a continuous function j: R > R" with j(0) =0
such that [F(x)lB < jmix|, for xe X, and |x|>\ srt. If xeX nD(B)
and y € X, then there exists € >0, N=21, and § > 0 such that if
|x|>‘ < €/2 and |y| s €/2 then the solution of (1.2) exists on [0,%) and
satiefiea |u(t)|)‘ < Ne'ét(IxIA + |Bx + y]).

Proof. Let N = max{K,MA}, €, > 0 such that j(€)) < (b - w)/2,
and ¢ = ¢ /N. For Ix!k <€/2 and |y| € €/2, let u be the solution

of equation (1.2) and [0,t*] ([0,°) if t* = «) the maximal interval

such that |u(t)}, e, forall 0=t <t* For 0S5t <tH,

(60 u(t)
Y A t A
= T(t)[C(t) (—Gc) X + (-Gc) S(t)(Bx+y)] + T(t-s) (—Gc) S(t - s)F(u(s)) ds
0

and

lu(t) ')\

w b-w t Wy (t-s)
)‘l My, I e 0(t-s), A lu(s)ly ds.

t
e'bt[Kemlxlx + Me A [Bx+yl] + [ 5

<
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(b-wx)t
e Iu(t)h

T‘? b-w

\ t (b-wA)s
< K]xlA + MAIBx +yl + 7 M JO e l“(s)lx ds '

and Gronwall's inequality yields
[(b-wy)/2] (Nt)
lu(e) ], < N(Ix], + |Bx + y])e :

Thus & = [(b - wx)/Z]N and t* = © by Theorem 3.4.

5. EXAMPLES. We first consider the equation
(5.1) Wep (6] + 2b(x)W(x,t) = w  (x,t) + f(W(x,t)), O<x<m teR

w(0,t)

w(m,t) = 0, t e R

w(x,0)

h(x), wt(x,O) = g(x), 0Osx<n

where h and g are in éZfz(O,n;R) and b: {0,m] > R is continuous.

Let X

i

,Zf;(o,n;k } with inner product ( , ) and define A: D(A) + X

by A¢ = ¢” where

D(A) = {¢ € X: ¢, ¢' are absolutely continuous,

¢" ¢ X, ¢(0) = ¢(m) = 0}.

A can be written in the form

A= - T n (8,006

n=]

for ¢ ¢ D(A), where ¢ (x) = (2/m'/%sin(nx). We define B: X+ X by

(Bd)x = b(x)d(x). Defining G = A + B> we have

. e
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J g 2 ;
[Go)x = T (-n® + b(x))(4,0,)9, (x) |
‘ n=1 i
r and G generates the cosine family
' [Ct)e1(x) = ] C (x,t) (4,0 )9 (x) ‘
n=1 !
where
i cos(n2 - bz(x))l/zt s n2 > bz(x)
1 Cn(x,t) = 41 , n2 = bz(x)
. cosh(b?(x) - n)%t ,  n? < v¥(x).
;} Also,
[S(t)f](x) = 21 s, (x,£)(9,6,)¢, (x)
n=
where
. m? - b)) Y%sinm? - Pt , n? s P
s () = {t , n? = b’
b2 x) - 082 sinm? 0 -0h Y3, e < vi).
x
g; Note also that -B generates the group {T(t): t ¢ R} on X defined by

e-tb(x)

[T(t)¢]lx = ¢(x) and D(B) = X. It is easily seen that properties

(2.1) - (2.7) are satisfied, Property (2.8) is established by the following

&

proposition.

O T

PROPOSITION 5.1. rLet A, B, C{t), S(t), T(t) be as above. Then (2.8)

i satisfied, i.e., for ¢ ¢ X, f: T(u)S(u)® du e D(A) and

S
A f T(u)S(u)p du = T(s)C(s)¢ - T(r)C(r)¢ + BT(s)S(s}¢ - BT(r)S(r)¢.
T

Ay -
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: Proof. Using the fact that C(t)T(s) = T(s)C(t) for all t,s ¢ R
'4 and identity (viii) in Proposition (2.1), we have
|
} def S O
i j(ty = C(t) [ T)S(u)¢ du = §~f T (S(u + t) + S(u - t))¢ du.
r T
Thus
; 1 (S
: i) - 7[ T(u)(Cu + t) - Clu - £))¢ du
. T
j 1 [S*t 1[5t
: = 5—[ T{u-t)Cu)é du - i-f T(u+t)C(u)d du
< T+t r-t
j
T and
i
iy o 1 [S*t
i i) = 5-[T(s)C(s-+t)¢ ~ T(r)C(r)9] + E-f BT(u - t)C(u)¢ du
i T+t
'% 1 1 s-t
' + ¥ [T(s)C(s-t)d - T(r)C(r - t)¢] t3 J BT(u +t)C(u)¢ du.
: r-t
: Integrating by parts,
- 4 -
L (A + B%) {5 T(ws(uedu = c (0) /% T(u)s(u)¢du
3 r r
ifi s
%j = T(s)C(s)¢p - T(r)C(x)¢ + J BT(u)C(u)¢ du
. . r
g = T(s)C(s)¢ - T(r)C(r)d + BT(s)S(s)¢ - BT(r)S(r)¢
: S 9 8
i + f B"T(u)C(u)¢ du .
[ T

from which (2.8) follows. .

As noted in the comments preceding condition (3.1), condition

(3.1) is satisfied with A = 1/2. Also, if c¢ is such that bz(x) - c2 <0

1
y
“
D‘ PN a
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for all x e [0,7], we see that G;l exists, satisfies
! [h100 = I (0 + 200 - H)7He,0)0, (0,

n=1

and is compact. Furthermore,

(6" 2%1x = ] % - b2 + A 20,00 ().
. n=1
}. Since '
3 D62 = b e X: T (F - b0 + D) (8,0% < ) ;
. ne |
'.;; ={peX: | n2(¢,¢n)2 < «},
n=1
" we have from Travis and Webb [7] that
D((-Gc)”z) = {¢ € X: ¢ is absolutely continuous,
6’ ¢ X, and ¢(0) = #(m) = O}.
.-' Noting that for ¢ ¢ D((-Gc)l/z)
:‘.’? T r—m 2
- o'l = J (67,6 )¢ (x)| dx
3 ! 0 _nzl mn :l
5
o
mle 1/2 2
=I ) n[—i] (¢, )cos(nx)| dx
0 [n=1




o117 = 1-6."%]
m 0 2
- | [:2 (® - b2 c2)1/2(¢,¢n)¢n(xi] dx
0 In=1
- 1ol -2+ Do)’
=1

/2

it follows that there exists K > 0 such that for all ¢ ¢ D((—Gc)1 )

do'l = (o], = lo7].

If f(w) = -aw - bws, a,b >0 or f(w) = sin w then equation (5.1) is

the Klein-Gordon or Sine-Gordon equation respectively and (F(4)]x= f($(x))
satisfies the conditions of Theorem 3.2 with F: Xl/2 > X1/2.
defined by [F(¢)]x = -ad(x) - b¢3(x) is con-

For example,

to see F: Xl/2 > X1/2

tinuous, observe for ¢,y € Xl/2

|Fo - Fol,,, s K| [Fel’ - [Fy]’|

s Kla(e’ - v7) + 3bHY - 6%0")|

< ak|o' - 9] + 3K([WAY - wer] + or? - 6P ])

Supp Suppose b(x) 2 0 for all x e [0,m] and let bm = min{b(x):

-b t
m

0<x<m and by = max{b(x): 05 xs m}. Then |T(t)| < e and

there exists M,,, > 0 such that |(-G )1/2S(t)| <M ewllzt where
1/2 c 1/2

. _ 2 172
W ¢ if b, <1 and wl/2 = (%4 - 1) if bM > 1. Consequently,

1/2 ~ M

the results of section 4 apply provided 0 < bm < bM <1 or bM >1 and
2 1/2

b > (bM -,

As another example, consider
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2 ( 2 =
(5.2) wtt\x,t) + ~th(x,t) wxx(x,t) + f(w(x,t)), 0 <x<m, teR

w(x,0)

h(x), wt(x,O) = g(x), 0 < x <m

w(0,t)

w(m,t), wx(O,t) wx(n,t), te R

where h,g ¢ ,{Z(O,H;IR). Again let X o{é(O,W;R) with inner product

{ , ) and define A: D(A) » X by A¢ = ¢” where

D(A) = {¢ € X: ¢, ¢' are absolutely continuous,

¢"e X, ¢(0) = ¢(m), ¢'(0) = ¢'(m)}.
A can be written in the form

1 ~an® (6,000 + (6,0)¥, ]

We~18

Ad =
n

where ¢ (x) = 2/m Y 2sin(2nx), v () = 2/myY 2cos(2nx), and
o= a+ I (6,006 + (0,40, a= (1/m) [y 6(x) dx. We define

B: D(B) » X by B¢ = ¢’ where
D(B) = {¢d e X: ¢" ¢ X, ¢(0) = ¢(m)}.

The group {T(t): t ¢ R} generated by -B is defined by

[T(t)lx = a+ [ (6,09 (x - t) + (&,¥ )0 (x - t)
n=1
and G = A + B2 = 2A generates the cosine family
[C(t)d]x = a + [ cos(2/Z nt)[(4,0 )0, (x) + (6,4 ¥ (x)].
n=1

Conditions (2.1) - (2.7) are satisfied and condition (2.8) is verified

in the manner indicated by the proof of Proposition 5.1. Also, G—l exists

1/2 exists with

as a compact operator on X and (-Gc)
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{
- 1/2, v
‘g (-6, % = ngl 2/2 n[(6,6,)0, *+ (6,4 )% 1.
'{ The existence results of section 3 apply to example (5.2); however, note
- ’
‘ ; that since T(t) is of type b =0 and C(t) is of type w = 0, the
f asymptotic results of section 4 do not apply. X
The abstract theory also applies to the equation
f (5.3) L + 2b(x)wt = Wox ¥ f(w,wx), 0O<x<m, t e R
i
i w(0,t) = w(m,t) = wxx(o,t) = wxx(w,t) =0, telR
N W(x,0) = g(x), w,(x,0) =h(x), O0s<xsm.
i
As before let X = alfz(o,ﬂ;ll), AP = -¢"" with
| D(A) = {¢d ¢ X: ¢, ¢', ", ¢'" are absolutely continuous,
" € X, $(0) = 6(m) = ¢"(0) = ¢"(m) = 0}. >
L I
o In this case, [F¢]x = f(¢(x),d’'(x)) with appropriate conditions on f
' satisfies F: X1/4 + X continuous and consequently Theorem 3.3 applies.
._; REMARK. The techniques also apply to
g
.
XK - = -
P (5.4) Wee zwxxt Woxxx f(w,wx), 0O<x<mwm, t=20
byt with the side conditions of (5.3). Here B¢: -¢" with
3 D(B) = {¢ € X: ¢,¢’' are absolutely continuous, ¥

>,

¢” € X, ¢(0) = ¢(m) = o}.

-
-

Thus -B generates an analytic semigroup. Since A + 82 = 0, C(t)x = x,

S(t)x = tx, and equation (1.2) has the form

t
u(t) = T(t)[x + t(Bx + y)] + I (t - s)T(t - s)F(u(s)) ds. ;
0
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20. Abstract (continued)

where A and B are densely defined linear operators and F is

possibly nonlinear and unbounded. Assuming that A + 82 generates a

cosine family C(t) and -B generates a group T(t), there is a

variation of constants formula for (1); namely

@) wu(t) = T(e)[C(tIx + S(t)(Bx + y)

. f‘ Tt - s)SCt - S)F(u(s)) ds,
0

where S(t) is.the sine family associated with C(t). The motivgting

examples include w e * Zb(x)wt =Wt f(y,wx,wi)_ and w,, + 2w __ =

t tt tx

wex * f(y,wx,wi), for 0<x<n, te R, w(kx,0) = h(x), wt(x,O) = g(x),
and various boundary conditions. We examine the existence of mild solu-
tions and the asymptotic behavior when there is a damping effect intro-

duced by the 2Bu’(t) term,







